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This paper presents a power series approach to accurately obtain the damped separatrices
for a class of unforced non-linear oscillators. This in turn delineates the basins of attraction
of two or more stable attractors in the phase space. The method is illustrated by its
applications to the unforced Duffing−Holmes’ and blacklash oscillators. Next, a novel
semi-analytical integration scheme, called the phase space linearization method (PSL) is
developed to obtain stable and unstable periodic solutions of forced as well as unforced
non-linear oscillators and also the damped separatrices. The performance of the proposed
method has been tested against periodic solutions of three oscillators, namely Ueda’s,
Duffing-Holmes’ and Van der Pol’s oscillators, obtained using a fourth order Runge-Kutta
method with a sufficiently small time step. Moreover, the separatrices obtained using the
PSL method are compared with those obtained via the power series method as developed
earlier. The issue of accumulation of error in the PSL method as against the fourth order
Runge-Kutta scheme is also described numerically through an example of a first order
non-linear equation having closed form solution.
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1. INTRODUCTION

Non-linear oscillators often possess more than one attractor in the phase space. Each of
these attractors has its own basin of attraction, separated by curves or surfaces of measure
zero, called separatrices. Determination of these separatrices allows one to demarcate the
basins of attraction uniquely and therefore assumes importance in studying the global
non-linear response of oscillators. A typical such oscillator is the cubic oscillator with
negative linear stiffness, sometimes referred to as the Duffing-Holmes’ oscillator. The phase
plane diagrams for this oscillator without and with viscous damping and without external
excitations are shown in Figures 1 and 2. A brute-force approach to find out the
separatrices is to choose a sufficiently large set of initial conditions to cover the phase space
of interest and then to integrate the ODE with each of these initial conditions to ascertain
the attractor that the solution trajectory converges to. This approach is, however,
computationally expensive and time consuming. Unfortunately existing theories of
stability provide only sufficient conditions and therefore a computational approach for
finding out the global domains of attraction needs to be iterative in general. Thus, Margolis
and Vogt [1] have recursively used a method based on Liapunov functions originally
proposed by Zubov [2] to determine the regions of attraction of second order systems. A
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Figure 1. Phase plane diagram for the undamped and unforced Duffing-Holmes’ oscillator.

drawback of this technique is the non-uniform convergence arising out of a Taylor-series
expansion of the non-linear term. Davison and Kurak [3] have fitted a hyperellipse in the
domain of attraction. The hyperellipse was determined using a constrained error
minimization. However, this method is not designed to determine the complete domain
of attraction. For autonomous non-linear systems, Vannellij and Vidyasagar [4] have
exploited the concept of maximal Liapunov function to develop a partial differential
equation (PDE) that provides the basis for obtaining the regions of attraction. However,
the solution of this PDE itself is a formidable task. For many oscillators which show chaos,
an analysis of the separatrices may provide a valuable guide towards understanding the
onset of chaos. With this in mind, an effort is made in this paper to analytically obtain

Figure 2. Asymptotic positions of a pair of trajectories starting from different initial conditions.
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the separatrices of a class of second order non-linear oscillators having two-well potential
based on a power series approach.

Even though the power series approach was found to be a powerful analytical tool to
delineate the basins of attractions of the stable fixed points for the unforced oscillators,
such an approach cannot readily be adapted to find out the separatrices when the
oscillators are forced by harmonic excitations. In such a case, the unstable saddles, through
which the separatrices pass, Hopf-bifurcate into unstable limit cycles. Thus, it is important
to accurately find out the unstable limit cycle before an attempt can be made to obtain
the forced separatrix. Unfortunately, existing numerical methods of integration, such as
the Runge-Kutta method, the Milne method or the Adams–Bashforth method, cannot be
used for finding the unstable orbits. Moreover, all these numerical schemes essentially
convert the continuous flow of the original ODE to a finite difference map, which is iterated
to proceed forward in time. In view of this, a new semi-analytical method for integrating
non-linear ODEs is further developed in this paper. The method is based on successive
linearization of the vector field in the phase space. The basic idea behind this new method
is first introduced. Then the method is applied to obtain the periodic response of three
distinct kinds of non-linear oscillators. The first one is Ueda’s oscillator, which, when
unperturbed, i.e., undamped and unforced, possesses no hyperbolic fixed points in the
phase plane. This is in contrast to the Duffing-Holmes oscillator, which has a saddle along
with a pair of centres in the unperturbed phase plane. The third example is the Van der
Pol oscillator, which provides a prototypical example of self-excited non-linear oscillators.
Comparisons of this new technique with the conventional Runge-Kutta method are also
furnished. To have an estimate of the error getting accrued in the marching process, the
solutions obtained via the new method and the Runge-Kutta method are compared with
the known exact solution of a first order non-linear ODE. The method is then adapted to
obtain the damped separatrices of a class of double well potential problems and compared
with the power series solutions developed earlier. Finally the new method is exploited to
find out a class of stable and unstable limit cycles with relatively less numerical effort.

2. THE NON-LINEAR OSCILLATORS

Four different non-linear oscillators are dealt with in the present paper. These are the
cubic oscillators with (Duffing-Holmes’) and without (Ueda’s) the linear stiffness term, the
backlash oscillator and the Van der Pol’s oscillator. The Duffing-Holmes’ oscillator is given
by the following second order ODE

z̈+ cż− k1 z+ k2 z3 =P cos (lt). (1)

Here dots denote differentiation with respect to time t. There are five parameters, namely
c, k1, k2, P and l, and all of them will be considered to be non-negative real numbers.
It is convenient to reduce these five parameters to three via the following set of
transformations

x=
z
zc

,

zc =0k1

k21
1/2

,

t=
lt
2p

. (2)
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This results in

x0+2po1 x'+4p2o2 (x3 − x)=4p2o3 cos (2pt), (3)

where primes denote derivatives with respect to the normalized time, t. However, for
further discussion, primes will be replaced by dots and t by t. In Ueda’s equation the linear
term is not present and hence can be expressed as

ẍ+2po1 ẋ+4p2o2 x3 =4p2o3 cos (2pt). (4)

In contrast with the above two oscillators, the backlash oscillator is piecewise linear and
is given by the following second order ODE

ẍ+ o1 ẋ=0 =x =E h,

ẍ+ o1 ẋ+ o2 (x− h sgn x)=0 =x = r h, (5)

where h is a positive real number. The normalized form of Van der Pol’s oscillator is

ẍ+2po1 ẋ(4x2 −1)+4p2o2 x=4p2o3 cos (2pt). (6)

3. DAMPED SEPARATRIX: POWER SERIES SOLUTION

Equation (3) for o3 =0 possesses an unstable solution which approaches zero
asymptotically. In the phase plane, this passes through the origin. This is called the damped
separatrix. Now equation (3), with o3 =0, is recast as

y= ẋ,

ẏ=−d1 y− d2 (x3 − x), (7)

where

d1 =2po1,

d2 =4p2o2. (8)

Elimination of the independent time variable from equation (7) results in

y
dy
dx

+ d1 y=−d2 (x3 − x). (9)

Equation (9) has two sinks at {21, 0} and a saddle at {0, 0}. It is intended, here, to closely
approximate the separatrix, separating the basins of attraction of the two sinks, as shown
in Figure 3. Now, in order to approximate the separatrix near the saddle {0, 0}, y is
expanded in terms of a power series in x around the saddle as

y= a0 + a1 x+ a2 x2 + a3 x3 + · · · , (10)

so that

dy
dx

= s
a

n=1

nan xn−1. (11)
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Figure 3. Damped separatrices and convergence of the power series.

The condition y(x=0) yields a0 =0. The other coefficients may be readily obtained by
substituting equations (10) and (11) in equation (9) followed by equating the various
powers of x. Thus

x1: a1 =−0·5d1 2 0·5(d2
1 +4d2)1/2,

x2: a2 =0

x3: a3 =
−d2

(4a1 + d1)
,

x4: a4 =0,

x5: a5 =
−3a2

3

(6a1 + d1)
,

and so on . . . . (12)

The ambiguity associated with the coefficient a1 may be resolved by noting that, very near
the saddle, where a1 x is the major contributing term in equation (10), y is negative for
positive x and vice versa. This leads to

a1 =−0·5d1 −0·5(d2
1 +4d2)1/2. (13)

Referring to Figure 3, it may be argued that the power series in equation (10) would
converge at a point p near the saddle within a circle of radius R, where R is the distance
of p from the nearest pole P1. At P1, dy/dx becomes unbounded. Therefore, as the pole
P1 is approached, R decreases and obviously more and more terms in the power series
expansion (10) would have to be retained for convergence. This can, however, be avoided
if the pole P1 is vaulted. To this end, some point p1 = {x1, y1} is chosen away from P1.
Now by introducing linear transformations

x= x̄+ x1,

y= ȳ+ y1, (14)
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equation (9) takes the form

−
dx̄
dȳ

{d1 (ȳ+ y1)+ d2 (x̄3 +3x̄2x1 +3x̄x2
1 + x3

1 − x̄− x1)}= y1 + ȳ. (15)

It is noted that the separatrix is unique and the function relating y and x (or ȳ and x̄)
over a small segment is one-to-one and hence invertible. Thus, it is possible to expand x̄
as a power series in ȳ around the point p1 as follows

x̄= s
a

i=0

bi ȳi. (16)

It immediately follows that b0 =0. The other coefficients may be evaluated by substituting
equation (16) into equation (15) and equating various powers of ȳ. They are

ȳ0: b1 =
y0

{d1 y1 + d2 (x3
1 − x1)}

,

ȳ1: b2 =0·5{1+ d1 b1 + b2
1 d2 (3x2

1 −1)}/(d2 x1 − d2 x3
1 − d1 y1), (17)

. . . . . . . . . .

The power series in equation (16) would fail to converge at the pole P2. Therefore, again
a point p2 = {x2, y2} away from P2 is chosen and the following transformation introduced

x= x̄+ x2,

y= ȳ+ y2. (18)

The variable ȳ is now expanded in a power series in x̄ around p2 as

ȳ= s
a

i=0

di x̄i. (19)

Using equation (18) in equation (9), it follows that

dȳ
dx̄

ȳ+ y2
dȳ
dx̄

+ d1 ȳ=−d2 (x̄3 +3x̄2x2 +3x̄x2
2 + x3

2 − x̄− x2)− d1 y2. (20)

The coefficients di may now be evaluated on similar lines as explained earlier. This
technique of switching to and fro in between the power series in equation (16) and the one
in equation (19) may be continued to avoid the consecutive poles and in the process, as
many loops of the damped separatrix may be generated as desired.

It may be pointed out here that the analysis of the damped separatrices as presented
above applies to many other damped non-linear oscillators, where such separatrices exist.
This is true even for a class of oscillators where the vector field is not always C'r, rq 1.
As an interesting example, the piecewise linear viscously damped backlash oscillator as
described by equation (5) may be taken up. It may be readily observed that every point
in [−h, h] is a non-hyperbolic (or neutrally stable) sink of the oscillator. The oscillator
therefore has an uncountable infinity of such neutrally stable sinks. As t:a every
trajectory of the oscillator almost surely approaches a point either in the left half [−h, 0)
or in the right half (0, h] with a damped separatrix passing through {0, 0}. However, it
is worth mentioning here that this separatrix is not a homoclinic orbit since the point {0, 0}
is not a saddle. The two eigenvalues determining the nature of solution trajectories at and
near {0, 0} are −h and 0. The negative eigenvalue, −h, determines the exponential rate
with which a point chosen on the separatrix away from {0, 0} gets attracted to nor repelled
by the separatrix. Thus, such an orbit asymptotically reaches a point either on the left half,



        849

[−h, 0), or on the right half, (0, h], of the x-axis. Here the oribt passing exactly through
{0, 0} is called the separatrix, as it enables one to identify whether an arbitrarily chosen
initial condition ends up on the left or right of {0, 0}.

In order to find out this separatrix, the power series approach can again be used. The
method is very much similar to the one described for the Duffing-Holmes’ oscillator. First,
the equation (5) is cast in the form

dy
dx

=+o1 if =x =Q h,

dy
dx

=
−o1 y− o2 (x− h)

y
if =x = r h, (21)

where y= ẋ. As has been seen for Duffing–Holmes’ oscillator, the power series approach
needs to be applied over small segments of the orbit so that successive poles are suitably
vaulted. With this in view, it is advantageous to introduce the following transformations

x= x̄+ xi ,

y= ȳ+ yi , (22)

where {xi , yi} denote the co-ordinates of the last known point on the separatrix. For
example, to start with {x0, y0} will be the same as the origin {0, 0}. Thus, one has

dȳ
dx̄

=−o1 if =x =Q h,

dȳ
dx̄

ȳ+
dȳ'
dx̄

yi + o1 ȳ=−o2 (x̄+ xi − h)− o1 yi if =x = r h,

=−o2 (x̄+ xi + h)− o1 yi if =x = r h. (23)

Now ȳ is expanded as a power series in x̄ as

ȳ= s
a

i=1

ai x̄i. (24)

The coefficients ai are

x̄0: a1 =
−o1 yi + o2 (xi − h sgn xi )

yi
,

x̄1: a2 =−
o2 + o1 a1 + a2

1

2yi
,

x̄2: a3 =−
a2 (o1 +3a1)

3yi
,

x̄3: a4 =−
o1 a3 +2a2

2 +4a1 a3

4yi
,

x̄4: a5 =−
o1 a4 +5a2 a3 +5a1 a4

5yi
,

. . . . . . . . . . (25)
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As a pole is approached dȳ/dx̄ becomes unbounded. In order to vault the pole, x̄ is
expanded as a power series in ȳ as in equation (16). Next, the coefficients bi are given by

ȳ0: b1 =−
yi

o1 yi + o2 (xi − h sgn xi )
,

ȳ1: b2 =−
1+ o1 b1 + o2 b2

1

2o1 yi +2o2 (xi − h sgn xi )
,

ȳ2: b3 =−
2b2 o1 +3b1 b2 o2

3o1 yi +3o2 (xi − h sgn xi )
,

ȳ3: b4 =−
−3o1 b3 +2o2 (2b1 b3 + b2

2 )
4o1 yi +4o2 (xi − h sgn xi )

,

ȳ4: b5 =−
4o1 b4 +5o2 (b1 b4 + b2 b3)
5o1 yi +5o2 (xi − h sgn xi )

,

. . . . . . . . . . (26)

3.1.  

To illustrate the foregoing analysis, some numerical results have been obtained. First,
the damped Duffing-Holmes’ oscillator is taken up. Figure 4(a–c) shows the damped
separatrices obtained using the power series approach for different values of the damping
parameter, o1. The method has been found to be extremely efficient from a computational
viewpoint. Here, to reduce the number of terms in the power series given by the equations
(16) and (19), the following numerical strategy has been resorted to. Power series (16) has
been used as long as =dx̄/dȳ = R 1. If =dx̄/dȳ =q 1, it implies that =dȳ/dx̄ =Q 1, and in such
a situation power series (19) has been made use of. Again for =dȳ/dx̄ =q 1, a switch-over
to the power series in equation (16) has been effected. For the backlash oscillator given
by equation (5), the damped separatrices have been obtained for three different values of
the damping parameter, o1, and these are shown in Figure 5. The discontinuities of these
separatrices at =x == h are quite conspicuous.

4. THE CONCEPT OF LINEARIZATION

It is quite well known that for obtaining the one-periodic response of a non-linear
oscillator driven by a harmonic excitation, it is possible to replace the non-linear system
by an equivalent linear system with the same excitation. The technique is known as the
linearization of Krylov and Bogliubov and has been well documented by Minorsky [6].
In this method the mean square error due to the replacement of the non-linear flow by
a linear flow is minimized with respect to the unknown parameters over one cycle of
oscillation. Since the steady-state response of the equivalent linear system has to be in the
form of a symmetric one-periodic orbit around a fixed point, one ends up with an
approximation to the actual orbit under certain restrictions.

The concept of local linearizations of non-linear vector fields around fixed points, or
more generally non-wandering sets, is also well studied in the literature on non-linear
dynamical systems. In particular, it is known from Hartman’s theorem that if p is a
hyperbolic fixed point of the non-linear oscillator, then there is a C0 invertible map
(homeomorphism) locally taking the actual orbit to the orbit of the linearized variational
equation, defined by

ẏ=Dx (p)y, (27)
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Figure 4. Damped separatrices for Duffing-Holmes’ oscillator via power series: (a) o1 =0·01, o2 =0·5, o3 =0;
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Figure 5. Damped separatrices for the backlash oscillator via power series: (a) o1 =0·05, o2 =0·5, h=0·5; (b)
o1 =0·15, o2 =0·5, h=0·5; (c) o1 =0·5, o2 =0·5, h=0·5.
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where x is the original co-ordinate vector. However, there is no way to explicitly construct
this homeomorphism and, moreover, away from the fixed point, p, Hartman’s theorem
is no longer valid.

5. PHASE SPACE LINEARIZATION (PSL)

To start with, the non-linear ODE

ẍ+ cẋ+ kx+ j(x, ẋ)=F sin (lt), x $R1, (28)

with the initial conditions

x(t0)= x0,

ẋ(t0)= ẋ0,

is considered. Here the function j is non-linear in x and ẋ. Now, using the existence and
uniqueness theorem [8], if the vector field is Cr, rr 1, and {x0, ẋ0, t0}$UWR2 ×R1, then
there is a unique Cr local solution ft (x0, ẋ0, t) for =t− t0 = sufficiently small. Moreover, the
solution ft (x0, ẋ0, t) can be uniquely extended forward and backward in time provided
it is bounded. At this stage, it is convenient to partially order the time axis as
t0 Q t1 Q t2 Q · · ·Q ti Q ti+1 Q . . . . Let the corresponding points on a solution trajectory
be denoted as xi = {xi , ẋi}, i=0, 1, 2, . . . A knowledge of each of the solution segements
[xi , xi+1) $ R2 allows one to construct the complete solution trajectory starting at x0 by
taking the union * i [xi , xi+1). Now, over the semi-closed time interval [ti , ti+1), the Cr

solution trajectory x(xi , ti , t) allows a Fourier series representation and thus it may be
argued that over the same time interval it is possible to replace the non-linear ODE by
an equivalent linear ODE, since the same Fourier representation is obtainable via a linear
system. However, deriving such linear systems over each time interval is not an easy task.
Presently, it would be interesting to ask whether it is possible to replace the non-linear term
j(x, ẋ) by a suitably chosen linear function, leaving the other terms including the forcing
unaffected. This would enable one to locally integrate the linear ODE to have a local
approximation to the solution of the non-linear ODE over [ti , ti+1). The complete solution
may then be obtained by simply joining the local solutions together. In what follows, an
approximate replacement technique for the function j(x, ẋ) based on the minimization of
errors is proposed. Thus, in the semi-closed interval [ti , ti+1) equation (28) may be replaced
by the following linear ODE

ẍ+ cẋ+ kx+ ki (xi , ẋi )x+ ci (xi , ẋi )ẋ=F sin (lt). (29)

Now to obtain workable expressions for ki and ci for every i, the square of the error

e2
i =g

xi +Di

xi
g

ẋi + gi

ẋi

{j(x, ẋ)− ki (x, ẋ)x− ci (x, ẋ)ẋ}2 dx dẋ, (30)

may be minimized with respect to the unknown parameters, ki and ci . In the above
expression, the increments Di and gi are given by

Di = xi+1 − xi ,

gi = ẋi+1 − ẋi . (31)
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This exercise finally results in a pair of non-linear algebraic equations in Di and gi for each i.
In the special cases where the function j in equation (28) is either of the following four
forms

j= j(x),

j= j(ẋ),

j= j1(ẋ)x,

j= j2(x)ẋ, (32)

only a single transcendental equation for Di or gi needs to be solved for each i.
To illustrate the implementation of the above linearization scheme, three examples,

namely Ueda’s oscillator, Duffing-Holmes’ oscillator and Van der Pol’s oscillator are taken
up. Now to facilitate further discussion, it is convenient to recast equation (29) in the form

ẍ+ h(xi , ẋi )ẋ+ b(xi , ẋi )x=F sin (lt). (33)

5.1. ’ 

After a normalization, Ueda’s oscillator is given by the non-linear ODE as in equation
(4). Comparing the above equation with equation (28), it may be observed that

c=2po1,

k=0,

j=4p2o2 x3. (34)

Here the equivalent linear equation (33) approximately valid over an interval [ti , ti+1) takes
the form

ẍ+2po1 ẋ+4p2o2 b(xi )x=4p2o3 cos (2pt). (35)

Following an error minimization, i.e., 1e2/1b=0, the expression for b(xi ) is found to be

b(xi )= (x4
i +2x3

i Di +2x2
i D2

i + xi D
3
i

+D4
i /5)/(x2

i + xi Di +D2
i /3), (36)

where Di is given by equation (31). The pair of eigenvalues associated with the
complementary function of equation (35) are

il1,2 =−po1 2 pz{o2
1 −4o2 b(xi )}. (37)

Now the particular solution of equation (35) is

pi (t)=
o3 {o2 b(xi )−1} cos (2pt)+ o1 o3 sin (2pt)

{o2 b(xi )−1}2 + o2
1

. (38)

Letting

hi = ti+1 − ti , (39)

the complete solution of equation (35) may, in general, be written down as

x(t)=F1i (xi , ẋ, Di , hi ),

ẋ(t)=dF1i /dt=F2i (xi , ẋi , Di , hi ), (40)
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where

F1i =K1i exp{il1 (t− ti )}+K2i exp {il2 (t− ti )}+ pi (t),

F2i = il1 K1i exp{il1 (t− ti )}+ i
l2 K2i exp{il2 (t− ti )}+ ṗi (t),

if il1,2 are real, (41)

otherwise

F1i =exp{−po1 (t− ti )} {K1i cos (pai t)+K2i sin (pai t)}+ pi (t),

F2i =−po1 exp{−po1 (t− ti )} {K1i cos (pai t)+K2i sin (pai t)}

+ pai exp{−po1 (t− ti )} {K2i cos (pai t)−K1i sin (pai t)}+ ṗi (t),

ai = {4o2 b(xi )− o2
1}1/2. (42)

The constants K1i and K2i need to be determined from a knowledge of {xi , ẋi} followed
by solving a pair of simultaneous equations. Now, Di can be obtained using the identity

xi+1 = xi +Di , (43)

which leads to

Di =F1i (xi , ẋi , Di , ti+1, hi )− xi . (44)

The above is a transcendental equation in Di and can be solved using standard routines.
The original non-linear flow is thus converted to a 2-D non-linear map

xi+1 =F1i (xi , ẋi , Di , ti+1, hi ),

xi+1 =F2i (xi , ẋi , Di , ti+1, hi ). (45)

This map may be iterated using a digital computer for as long as desired, provided the
initial conditions x0 and ẋ0 along with the initial time, t0, are prescribed.

5.2. -’ 

The normalized Duffing-Holmes’ oscillator is given by equation (3). Comparison of this
equation with equation (28) leads to

c=2po1,

k=−4p2o2,

j=4p2o2 x3. (46)

The rest of the operations are very much similar to those carried out already for Ueda’s
oscillator. Thus, the equivalent linear equation along with its equivalent stiffness parameter
b(xi ) are again given by equations (35) and (36), respectively. The pair of eigenvalues il1,2

are now given by

il1,2 =−po1 2 p[o2
1 −4o2 {b(xi )−1}]1/2. (47)

The particular solution is

pi (t)=
o3 [o2 {b(xi )−1}−1] cos (2pt)

{o2 (b(xi )−1)−1}2 + o2
1

.

+
o1 o3 sin (2pt)

{o2 (b(xi )−1)−1}2 + o2
1
. (48)
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The complete solution over the interval [ti , ti+1) is as before given by equations (39)
through (42) with the only exception that ai is now given by

ai =[4o2 {b(xi )−1}− o2
1 ]1/2. (49)

The rest of the operations along with the corresponding equations, namely equations (43)
through (45), remain identical.

5.3.   ’ 

The normalized form of Van der Pol’s oscillator is as shown in equation (6). Here, again,
a comparison with equations (28) and (32) shows that the following is a valid choice

c=−2po1,

k=4p2o2,

j(x, ẋ)=8po1 x2ẋ.

j1 (x)=8po1 x2. (50)

The equivalent linear equation (33) now may be written down in the form

ẍ+2po1 hi (xi )ẋ+4p2o2 x=4p2o3 cos (2pt). (51)

Mean square error minimization leads to

hi (xi )= x2
i + xi Di +D2

i /3. (52)

Figure 6. Undamped, unforced phase plane of Ueda’s equation: o1 =0·0, o2 =1·0, o3 =0·0, x0 =0·9, ẋ0 =0·0.
qqqq, Linearization; ——, Runge-Kutta.
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The pair of eigenvalues are
il1,2 =−po1 hi (xi )2 p{o2

1 hi (xi )2 −4o2}1/2. (53)

The particular solution is

pi (t)=
1
D

{o3 (o2 −1) cos (2pt)+ o1 o3 hi (xi ) sin (2pt)}, (54)

where

D=(o3 −1)2 + o2
1 hi (xi )2. (55)

The complete solution is now given by equation (40). However, if il1,2 are complex
conjugates, the functions F1i and F2i take the form

F1i =exp{−po1 hi (t− ti )} {K1i cos (pai t)+K2i sin (pai t)}+ pi (t),

F2i =−po1 hi exp{−po1 hi (t− ti )} {K1i cos (pai t)+K2i sin (pai t)},

+ pai exp{−po1 hi (t− ti )} {K1i cos (pai t)+K2i sin (pai t)},

ai = {4o2 − o2
1 hi (xi )2}1/2. (56)

The remaining set of operations are precisely the same as in the previous two cases.

5.4.  

It would now be appropriate to obtain some numerical results in order to substantiate
the previous analysis. First, the phase plots of the undamped and unforced Ueda’s and

Figure 7. Undamped, unforced phase plane of Duffing-Holmes’ equation: o1 =0·0, o2 =1·0, o3 =0·0. ——,
Linearization; qqqq, Runge-Kutta.
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Duffing–Holmes’ oscillators via the present method and a fourth order Runge-Kutta
routine are shown in Figures 6 and 7. The unforced and damped Van der Pol’s oscillator
given by equation (6) with o3 =0, possesses a limit cycle and this is shown in Figure 8.
The time-steps, hi , have been uniformly fixed at 0·02 for all the cases. It may be observed
that the comparison is extremely good in all these cases. With the inclusion of forcing and
damping, all the three oscillators are capable of showing a variety of one-periodic orbits.
Some of these orbits are reported in Figure 9–11. Corresponding solutions via the
Runge-Kutta routine are also shown in all these figures. The comparison is again found
to be extremely favourable.

6. ACCUMULATION OF ERRORS IN THE NEW METHOD

Unlike the Runge-Kutta method, there is at present no viable way to predict the error
that gets accumulated in the process of time marching using the new piecewise linearization
scheme. However, the level of approximation achieved by the new method may be
conveniently checked against the exact solution of a non-linear ODE. With this in view,
the first order ODE

ẋ+ x2 =0, (57)

is solved. Thus, with the initial condition x0 =1, the complete solution is

x(t)=
1

1+ t
. (58)

Figure 8. Self-excited limit cycle in unforced Van der Pol’s oscillator: o1 =0·25, o2 =1·0, o3 =0·0. qqqq,
Runge-Kutta; ——, Linearization.
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Figure 9. Two kinds of one-periodic orbits for Van der Pol’s oscillator: (a) o1 =0·25, o2 =1·0, o3 =0·4; (b)
o1 =0·25, o2 =1·0, o3 =1·0. ——, Runge-Kutta; qqqq, Linearization.

Now, to make use of the new linearization scheme for solving equation (57), it is necessary
to write it in the equivalent linear form

ẋ+ b(xi , Di )x=0, (59)
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valid over the interval [ti , ti+1). Following an error minimization over [xi , xi+1), the
expression for b may be derived as

b(xi , Di )=
3D3

i +12xi D
2
i +18x2

i Di +12x3
i

4D2
i +12xi Di +12x2

i
. (60)

Figure 10. Two kinds of one-periodic orbits for Duffing-Holmes’ oscillator: (a) o1 =0·25, o2 =0·5, o3 =0·1;
(b) o1 =0·25, o2 =0·5, o3 =0·8. ——, Linearization; qqqq, Runge-Kutta.
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Figure 11. One-periodic orbits for Van der Pol’s oscillator: (a) o1 =0·25, o2 =1·0, o3 =1·0; ——, Linearization;
qqqq, Runge-Kutta.

The local linearized solution is

x(t)=K(xi ) exp{−b(xi , Di ) (t− ti )}, t $ [ti , ti+1), (61)

and

K(x0)=1. (62)

Thus, it is clear that the present method approximates the function of equation (58) by
a set of exponential functions, each valid over a small segment of the trajectory. In
Figure 12, the solution obtained via the piecewise linearization is compared with the
exact solution. In the same figure, the errors in the solution trajectories obtained via
the present method and the fourth order Runge-Kutta method with respect to the
exact solution curve (equation 58) are plotted as a function of time. The time step for
integration has been consistently fixed at 0·01. It may be readily observed that the new
linearization method results in errors which are considerably less than the Runge-Kutta
method.

Now, the case of undamped and unforced Duffing-Holmes’s oscillator may be
considered. The equations for the homoclinic orbit passing through the saddle point at
the origin are

x(t)=2z2 sech (2pzo2t),
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Figure 12. Solutions for an exactly integrable first order ODE: (a) comparison of the linearized solution against
the exact solution: ——, Linearization; ××××, exact. (b) comparison of errors in Runge-Kutta and
linearization: ——, Linearization; ××××, Runge-Kutta.
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ẋ(t)=22pz2o2 sech (2pzo2t) tanh (2pzo2t). (63)

Other than the saddle, the homoclinic orbit intersects the x-axis at {−z2, 0} and {z2, 0}.
This orbit being an invariant curve, if one starts at anyone of these intersection points,
one should reach the saddle asymptotically as the ODE is integrated forward or backward
in time. However, in practice, numerical errors creep in and this would result in the
solution deviating from the actual homoclinic orbit and ending up on a periodic trajectory.
Hence, the robustness of a numerical scheme can be evaluated by finding how closely the
solution approaches the saddle. In order to have this type of comparison between the
Runge-Kutta and the proposed linearization schemes, the results of numerical integrations
of a trajectory starting from {z2, 0} using both the methods is shown in Figure 13.
Moreover, the errors that accrue in time marching, using the Runge-Kutta and the
linearization methods, are tabulated in Table 1. The errors are computed with respect to
the exact solution given by equation (63). Here again, it is found that the orbit integrated
via the new linearization method approaches the saddle more closely, thereby indicating
a lower accumulation of errors.

7. APPLICATIONS OF THE PSL

The phase space linearization method presented in the previous section effectively
reduces a non-linear ODE to a non-linear map like all other numerical integration
methods. However, unlike other methods, here the form of the map is quite explicit.
Moreover, the local flow structure is also uniquely determined explicitly in terms of the
dependent variables {xi , ẋi} and time. Each local solution consists of a free vibration part
and a forced vibration part. In case the system is unforced, the eigenvalues of the
complementary part alone would furnish complete information about the local structure
of the flow. This aspect can be conveniently used for getting several useful information
about the oscillator, which may not be the case with other numerical integration schemes.

7.1.  

First, the case of damped, but unforced Duffing-Holmes’ oscillator is considered. The
damped separatrix of the Duffing-Holmes’ oscillator may be readily recognized as the
damped stable manifold passing through the saddle at {0, 0}. As t:a, any point on this
invariant manifold approaches the saddle. It may also be recalled that via phase space
linearization it is possible to reduce Duffing-Holmes’ oscillator to a map given by

xi+1 =F1i (xi , ẋi , il1,2, Di , ti+1, hi ),

xi+2 =F2i (xi , ẋi , il1,2, Di , ti+1, hi ). (64)

Sufficiently near the saddle, the eigenvalues il1,2 of the complementary function of the
linearized equation over the interval [ti , ti+1) are both real, one being positive and the other
negative. Further, for the present case, the stable manifold locally belongs to a
one-dimensional eigenspace spanned by the eigenvector corresponding to the negative
eigenvalue, say, il2. Similarly, the unstable manifold is locally spanned by the eigenvector
corresponding to the positive eigenvalue, il1. The unstable manifold goes asymptotically
to either of the stable sinks at {21, 0}.

Now, to obtain the damped separatrix, it is necessary to start off at the saddle, since
it is the only point on the separatrix known a priori. The solution curve for any trajectory
near the saddle would be

x(t)=K1i exp(il1 t)+K2i exp(il2 t), (65)
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Figure 13. Comparison of errors accumulated for an initial condition on the homoclinic orbit
x(0)=1·4142136, ẋ0 =0·0: (a) PSL; (b) Runge-Kutta. (c) Blow-up of the numerically integrated trajectories near
the saddle point: Q Q Q Q, Runge-Kutta; ****, linearization.
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T 1

Comparison of errors in RKGS and PSL

ẋ
ZXXXXXXXXXCXXXXXXXXXV Error in Error in

x RKGS PSL Exact RKGS PSL

1·200 −2·815150 −2·815252 −2·821143 −0·005993 −0·005891
1·100 −3·070021 −3·071108 −3·071539 −0·001518 −0·000431
1·000 −3·141523 −3·141592 −3·141593 −0·000070 −0·000001
0·900 −3·085703 −3·085751 −3·084366 0·001337 −0·001385
0·800 −2·934274 −2·931302 −2·930956 0·003318 −0·000346
0·700 −2·702619 −2·702616 −2·702318 0·000301 −0·000298
0·600 −2·414754 −2·415733 −2·413921 0·000833 −0·001812
0·500 −2·075357 −2·076341 −2·077968 −0·002611 −0·001627
0·450 −1·901321 −1·897123 −1·895382 0·005939 0·001741
0·400 −1·702092 −1·703038 −1·704586 −0·002494 −0·001548
0·350 −1·511451 −1·508321 −1·506634 0·004817 0·001687
0·300 −1·304932 −1·304785 −1·302530 0·002402 0·002255
0·250 −1·094521 −1·091446 −1·093228 0·001293 −0·001782
0·200 −0·880228 −0·880012 −0·879646 0·000582 0·000366
0·150 −0·663855 −0·661918 −0·662673 0·001182 −0·000755
0·100 −0·443245 −0·443238 −0·443176 0·000069 0·000062
0·050 −0·222310 −0·222018 −0·222005 0·000305 0·000013
0·025 −0·111329 −0·110372 −0·110547 0·000782 −0·000175
0·010 −0·053723 −0·0479060 −0·044277 0·009446 −0·003629
0·001 −0·008416 −0·003950 −0·004428 0·003988 −0·000478
0·000 −0·007260 0·002016 0·000000 0·007260 −0·002016

x(t)=K1i exp(il1 t)+K2i exp(il2 t), (65)

where

il1 =−0·5d1 +0·5{d2
1 −4d2 (b−1)}1/2 q 0,

il2 =−0·5d1 −0·5{d2
1 −4d2 (b−1)}1/2 Q 0. (66)

Here, the coefficient b is given by

b(xi , D)=
(x4

i +2x3
i Di +2x2

i D2
i + xi D

3
i +D4

i /5)
(x2

i + xi Di +D2
i /3)

. (67)

On the separatrix, K1i =0. This is because of the fact that x(t):0 as t:a. Thus, an
explicit relationship between x and ẋ can be obtained for all points on the separatrix near
the saddle. This will be

ẋi+1 = il2 (xi , di )xi+1. (68)

Further,

ti+1 = {1/il2 (xi , Di )} ln (xi+1), (69)

in deriving equation (69), it has been arbitrarily assumed that K2i =1·0. Any other finite
value of K2i would simply mean a finite translation along the time axis. However, this
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arbitrariness would only affect the parameterization by time, which is inconsequential in
so far as the interest is focused on obtaining a correct phase plane plot of x versus ẋ. An
important inference that can be drawn from equation (68) is that the Jacobian of
transformation given by

=J ==det $1xi+1 /1xi

1ẋi+1 /1xi

1xi+1 /1ẋi

1ẋi+1 /1ẋi%, (70)

is identically zero on the damped separatrix. It is interesting to note that the separatrix
and the unstable manifold are the only two invariant manifolds on which =J ==0
identically in the damped phase plane.

As one moves away from the saddle, from a point onwards at around x1 =1·0 for some
i, equations (68) and (69) are no longer valid, since the eigenvalues il1,2 become complex.
Therefore it is reasonable to proceed with equations (68) and (69) upto xi Q 1, say, xi 1 0·8,
and then use the last obtained values of xi , ẋi and ti to proceed further backwards using
the new linearization scheme. The only difference here would be that the time-axis is
partially ordered such that ti q ti+1 for all i. During this backward marching, build-up of
some numerical error is not ruled out. However, such errors may be conveniently tackled
using the fact that =J ==0, as follows. Let, for example, il1,2 both be real. A point on the
damped separatrix at t= ti+1 would then be given by

xi+1 =K1i exp(il1 ti+1)+K2i exp(il2 ti+1),

ẋi+1 = il1 K1i exp(il1 ti+1)+ il2 K2i exp(il2 ti+1)+Ri+1 (xi , ẋi ). (71)

Here Ri+1 is a function designed to nullify the numerical error at t= ti+1. Ri+1 is now
chosen in the form

Ri+1 =Ei+1 (x2
i + ẋ2

i )1/2. (72)

An equation to determine Ei+1 may be found from

J(Ei+1)=0. (73)

It may be pointed out here that the analysis of the damped separatrices as presented
in the above two sections applies to many other damped non-linear oscillators, where such
separatrices exist. This is true even for a class of oscillators where the vector field is not
always Cr, rr 1. As an example, the piecewise linear viscously damped backlash oscillator,
as described earlier, may again be considered. The equations of motion are reproduced
below.

ẍ+ o1 ẋ=0, =x =Q h,

ẍ+ o1 ẋ+ o2 (x− h sgn x)=0, =x = r h. (74)

Here h is a positive real number. Previously, a power series approach was formulated to
obtain the separatrix, separating the basins of attraction of uncountable infinity for the
neutrally stable sinks lying either side of the origin. In order to find out this separatrix,
the linearization approach is more convenient to adopt since the original equation itself
is piecewise linear. Thus the separatrix of equation (74) near the point, {x0, y0}= {0, 0},
is written as

x=K20 exp(−o1 t),

ẋ= o1 K20 exp(−o1 t). (75)
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A comparison of x and ẋ in the above equation leads to

ẋ=−o1 x. (76)

The above relationship is valid so long as =x =Q h. To proceed beyond =x == h, it is
necessary to find the time, t, at which =x == h. As an illustration, let t1

h be the time at which
x= h. Now, arbitrarily assigning K20 =0, as per the arguments presented earlier in this
section, it can be readily shown that

t1
h =−(1/o1) ln h. (77)

No equation (74) may be solved for xq h, with the initial conditions

x1 = h,

ẋ1 =−o1 h,

t1 = t1
h . (78)

Thus, for example, for o2
1 Q 4o2, the solution is given by

x(t)= exp(−0·5o1 t) (K11 cos (at)+K21 sin (at)),

ẋ(t)=−0·5o1 (x− h)+ exp (−0·5o1 t) (K21 a cos (at)−K11 a sin (at)),

a=0·5z4o2 − o2
1 ,

K11 =−(1/a)ẋ1 exp(0·5o1 t1) sin (at1),

K21 = (1/a)ẋ1 exp(0·5o1 t1) cos (at1). (79)

Similar solutions can be constructed for o2
1 q 4o2. Moreover, using this algorithm,

backward marching in time may be made away from the saddle and the damped separatrix
can be obtained.

7.2.   

For the harmonically forced Duffing-Holmes oscillator with sufficiently small forcing
amplitude parameter, o3, a one-periodic symmetric limit cycle exists surrounding the origin.
Here the interest would be in finding this orbit using the phase space linearization scheme.
It may be noted that, the separatrix of the basins of attraction of the pair of
stable one-periodic orbits starts from different points on the unstable limit cycle depending
on the initial time instant t0 =f. Such a variation of the perturbed separatrix is however
periodic in f with the same period as that of the external forcing. With this in view, it
would be convenient to translate the time axis as

t̄= t+f. (80)

Effecting this translation in equation (3), one gets

ẍ+2po1 ẋ+4p2o2 (x3 − x)=4p2o3 cos (2pt�+f), (81)

where f is modulo 1. In what follows, t� will be uniformly replaced by t for notational
convenience.

Though structurally unstable, the limit cycle around the origin is an invariant manifold
of the non-linear flow. Thus, under forward and backward iterates of the vector function
Fi = {F1i F2i} given by equation (45), any given point would remain on the orbit. Let any
point {uxi , uẋi} on the unstable limit cycle be chosen. It is now useful to investigate the
stable and unstable eigenspaces of the linearized flow at {uxi , uẋi}, making use of the PSL
scheme. Considering a closed-open segment I=[{uxi , uẋi}, {uxi+1, uẋi+1}) and any point
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ux= {ux, uẋ} $ I, the method of PSL permits one to construct a linear ODE for x which
closely approximates the non-linear ODE over I. The two eigenvalues required to construct
the complementary function of this linear ODE are given by

il1 =−po1 + p{o2
1 +4o2 (1− b)}1/2,

il2 =−po1 − p{o2
1 +4o2 (1− b)}1/2, (82)

where, b= b(uxi , Di ) is given by equation (36). If attention is restricted to the point
{uxi , uẋi} then it follows

b(uxi , Di )= b(uxi , 0)= ux2
i . (83)

For the unstable limit cycle, obviously ux2
i Q 1. Using this bit of information in equation

(71), it is readily seen that the eigenvalues il1,2 are always real and that

il1 q 0 and il2 Q 0. (84)

Let ie1 and ie2 denote, respectively, the eigenvectors corresponding to il1 and il2. Then
the unstable and stable eigenspaces, denoted respectively by iEu and iEs , are given by

iEu =span {ie1},
iEs =span {ie2}, (85)

Since il1 is strictly positive for all i, it is concluded that iEu exists everywhere on the limit
cycle. This ensues a structural instability of the limit cycle even under the smallest
perturbation. Further, strictly on the limit cycle, it is the stable eigenspace iEs that governs
the flow. Thus, the complete solution of the limit cycle over the interval I may be written
as

ux(t)=K2i exp (il2 t)+ (1/D)o3 {o2 (b−1)−1} cos 2p(t+f)+ (1/D)o1 o3 sin 2p(t+f),

(86)

where

D= {o2 (b2 −1)−1}2 + o2
1 . (87)

Since il2 is strictly negative, the first term on the RHS of equation (86) vanishes as t:a.
However, a difficulty that still stands in the way of finding this orbit is that not a single
point on it is yet known. To overcome this difficulty, a novel argument is presented. Let
a Poincaré section based on f=fi be chosen. On this section the unstable limit cycle
reduces to an unstable perturbed saddle {uxi , uẋi}. Moreover, it is noted that t has to start
from zero at the saddle as the arbitrariness in choosing the section is reflected in the
variable f. Therefore at this perturbed saddle, equation (86) takes the form

ux(t)= (1/D)o3 {o2 (b−1)−1} cos (2pfi )+ (1/D)o1 o3 sin (2pfi ). (88)

The above is a transcendental equation in uxi . This can be solved for various fi $ [0, 1).
Thus the unstable limit cycle is now given by the set of points {uxi , uẋi =fi $ [0, 1)}.

7.3.      

In this section, attention is restricted towards finding the one-periodic orbits for a class
of oscillators where the origin, {0, 0}, is a stable fixed point when no forcing is applied.
It may be mentioned that for the class of oscillators where a stable sink is located at a
point other than the origin, as in the Duffing-Holmes’ case, a simple transformation would
suffice to convert these systems to the ones satisfying the above requirements. However,
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for expedience, Ueda’s oscillator as in equation (4) is considered as an illustration. It is
known that for a sufficiently small excitation amplitude parameter, o3, the oscillator
possesses one-periodic limit cycles having a two-sided symmetry about the x and ẋ axes.
Now, let any point {sxi , sẋi} be chosen on this orbit. As in the case of unstable limit cycles,
here also the stable and unstable eigenspaces of the complementary part of the linearized
flow at {sxi , sẋi} needs to be investigated. Considering a closed-open segment I=[{sxi , sẋi},
{sxi+1, sẋi+1}) and any point sx= {sx, sẋ} $ I, the two eigenvalues required to construct the
complementary function of the equivalent linear ODE are given by

il1,2 =−po1 2 p{o2
1 +4o2 (1− b)}1/2, (89)

where, b is given by equation (36). Moreover, in the limit Di:0, it is readily seen that

Re (il1,2)E 0 [ sxi . (90)

Thus, as t:a, the complementary part of the local solution given by equation (40) goes
to zero. Therefore, in the limit as Di:0, the solution of the limit cycle may be expressed
as

sxi =A1 (sxi ) cos (2pt)+A2 (sxi ) sin (2pt) (91)

and

sẋi =−2pA1 (sxi ) sin (2pt)+2pA2 (sxi ) cos (2pt), (92)

where

A1 =
o3 (os

2 x2
i −1)

(o2
sx2

i −1)2 + o2
1
,

A2 =
o1 o3

(o2
sx2

i −1)2 + o2
1
. (93)

It is noted that equation (91) is a non-linear algebraic equation in sxi for any given
t $ [0, 1). Thus, solution of equation (91) followed by the use of equation (92) leads to the
solution for the one-periodic orbit. However, instead of solving for sxi repeatedly from
equation (91), the following simple transformation may be resorted to. Let the solution
of the orbit be taken in the form

sx= r cos 2p(t−f),

sẋ=−2pr sin 2p(t−f). (94)

Effecting the transformation c= t−f, it is readily seen that it suffices to know r for
obtaining a phase plane representation of the orbit. Let sxmin = {sxmin , 0} and
sxmax = {sxmax , 0} be the two points of intersection of the orbit with the x-axis, the former
on the negative side and the latter on the positive side. Thus, the following relation holds
true because of symmetry requirements

−sxmin = r= sxmax . (95)

Since at these points sx=0, it follows from equations (94) that

t=
1
2p

tan−1 0 o1

o2 r2 −11. (96)
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Figure 14. Damped separatrix of Duffing-Holmes’ oscillator: (a) o1 =0·01, o2 =0·5, o3 =0·0; (b) o1 =0·1,
o2 =0·5, o3 =0·0; (c) o1 =0·25, o2 =0·5, o3 =0·0. ——, Linearization; – – –, power series.
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Figure 15. Damped separatrix of the backlash oscillator: (a) o1 =0·01, o2 =0·5, h=0·5; (b) o1 =0·1, o2 =0·5,
h=0·5; (c) o1 =0·25, o2 =0·5, h=0·5. ——, Linearization; – – –, power series.
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Substitution of the above equation in the first of equations (94) leads to a
transcendentalequation in r. Thus, the orbit can be found to a high level of accuracy by
solving only a single transcendental equation.

7.4.  

To illustrate the above analysis, detailed numerical results have been obtained for all
the three oscillators analysed. The damped separatrices of the Duffing-Holmes oscillator
as obtained via the linearization procedure are shown in Figure 14 and compared with the
ones obtained via the power series approach. The comparison of the two approaches is
seen to be extremely favourable except at very low values of damping. For such low values
of o1, the sharp inward dip of the stable manifold towards the saddle is brought out more
accurately by linearization scheme. However, it may be pointed out that the power series
approach has been consistently found to be computationally faster. For the backlash
oscillator given by equation (74), the damped separatrices have been obtained for three
different values of the damping parameter, o1, and these are shown in Figure 15. Here the
comparison appears to be indistinguishably good. Next, the unstable limit cycle of
Duffing-Holmes’ oscillator have been obtained for two different values of the excitation
parameter, o3, and are plotted in Figure 16 along with the stable limit cycles. The

Figure 16. Stable and unstable limit cycles of Duffing-Holmes’ oscillator: (a) o1 =0·25, o2 =0·5, o3 =0·05;
(b) o1 =0·25, o2 =0·5, o3 =0·12.
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Figure 17. Stable one-periodic orbits of Ueda’s oscillator: (a) o1 =0·25, o2 =1·0, o3 =0·3; (b) o1 =0·25,
o2 =1·0, o3 =0·05. ——, Simulation; – – –, analytical.

unstable limit cycle is expectedly much smaller in size in comparison with the stable ones.
Due to the symmetry of the unstable limit cycles, it suffices to obtain only one half and
then generate the other half by reflection. Finally, the stable one-periodic limit cycles of
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Ueda’s oscillator, as obtained via the technique outlined in section 7.3, are shown in
Figure 17 and compared with numerically simulated orbits. The comparisons are found
to be favourable.

8. DISCUSSION AND CONCLUSIONS

To begin with, a power series approach is developed to obtain the damped separatrices
in second order damped non-linear oscillators. Here, a technique for vaulting the successive
poles of the series solution is also discussed in detail. The power series method is
functionally similar to the method of continuous analytic continuation, developed earlier
by Davis [5]. The method has been found to be very efficient computationally and can
easily be programmed in a digital computer. For bringing out the universality of the
method, the damped separatrices of two different oscillators, namely Duffing-Holmes’
oscillator and the piecewise linear backlash oscillator, have been obtained. An advantage
of this analytical approach is that one can quickly find out the asymptotic nature of any
trajectory starting from an arbitrary initial condition. Thus, the necessity of an extensive
numerical integration is eliminated. This approach is, however, crucially dependent on the
fact that at least one point on the separatrix should be known beforehand.

A novel linearization scheme, called phase space linearization, is next developed in this
paper for an efficient numerical integration of non-linear ODEs. The idea is to replace the
non-linear system in the phase plane by a union of piecewise linear system phase plane
trajectories. The non-linear ODE is therefore replaced by a set of linear ODEs whose
coefficients become functions of the values of dependent variables at the start of the time
intervals over which the linear ODEs are valid. Unlike the usual Runge-Kutta routines,
in this new method the increments of the dependent variables over a time interval are
calculated using a set of non-linear algebraic equations. However, in the specific case of
the non-linear ODE being of the form as given by equation (28), it is required to solve
only a transcendental equation. In principle, a transcendental equation may have more
than one real root. In the present case, however, the solution trajectory of the ODE is
known to be unique depending on the initial conditions. This hints to the fact that it is
possible to get a single real root of the transcendental equation for a given time interval
hi . Even though a mathematical proof towards this observation cannot be provided at
present, this has been numerically verified to be true without exception. Moreover, to
simplify the search for the root, Di , of the transcendental equation (44), it is suggested that
an approximate value for Di may be obtained using Taylor’s expansion

Di 1
dxi

dt
hi +

d2xi

dt2 h2
i /2!+

d3xi

dt3 h3
i /3!+. . . . . (97)

In the above expression, the second and the higher order derivatives of xi are expressible
in terms of xi and dxi /dt only. The actual root Di should be quite close to the approximate
one given by equation (97) and thus the interval of search can be reduced considerably.
This observation also helps in making the scheme computationally efficient. Thus, the
higher the number of terms in the Taylor expansion (97), less would be the time taken to
find out the roots. The procedure has been applied to obtain free vibration and
one-periodic forced vibration responses of different kinds of second order non-linear
oscillators. From the limited number of results presented, it is seen that the accumulation
of errors in the process of time marching is much less in the present method than in the
fourth order Runge-Kutta scheme. Moreover, an analysis of the eigenvalue structure of
the free vibration part of the locally linearized flow has been found to yield a spectrum
of useful information. Thus, it has been shown that it is possible to accurately find out
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the damped separatrices of Duffing-Holmes’ and backlash oscillators. This also leads to
an analytical criterion to obtain a class of stable and unstable limit cycles.

At this stage, it is pertinent to ask whether the technique of phase space linearization
can predict the subharmonic, quasi-periodic and chaotic response of non-linear oscillators.
Moreover, now that it is possible to have an analytical expression for the unstable limit
cycle of Duffing-Holmes’ oscillator, it may as well be possible to find out the forced
separatrix, separating the basins of attraction of the pair of stable limit cycles. The forced
separatrix is essentially the forced stable manifold reaching some point on the
unstable limit cycle asymptotically. The forced unstable manifold, on the other hand,
originates from the unstable limit cycle. Thus, if both the stable and unstable manifolds
can be obtained analytically, it should also be possible to derive information about
homoclinic intersections. Thus, it would be interesting to ask whether PSL can be suitably
adapted to compute characteristic quantities of the non-linear flow, such as Fourier
spectra, Liapunov characteristic exponents and probability density functions. That PSL
is indeed versatile in handling these and several other delicate questions demonstrated in
the companion paper [9].
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